Limits – They Make the Calculus Work.

In an ideal world, I would like to have all students study limits in their pre-calculus course and know all about them when they get to calculus. Certainly, this would be better than teaching how to calculate derivatives in pre-calculus (after all derivatives are calculus, not pre-calculus).

Limits are the foundation of the calculus. Continuity, an important property of functions, depends on limits. All derivatives and all definite integrals are limits. For AP Calculus students need a good intuitive understanding of limits, what they mean, and how to find them The formal (delta-epsilon) definition is not tested and need not be taught, however, do not feel that you have to avoid it. If your students can handle it, let them try.

Here are a few of my previous posts on limits.

Why Limits?

Finding Limits  How to … and the use of “infinity” vs “DNE”

Dominance  Finding limits the easy way.

Deltas and Epsilons Not tested on the AP Exams; here’s why.

Asymptotes The graphical manifestation of limits at or equal to infinity.

Next Week: Continuity


Update of my post of August 15, 2017.

Summer Fun

Every Spring I have a lot of fun proofreading Audrey Weeks’ new Calculus in Motion illustrations for the most recent AP Calculus Exam questions. These illustrations run on Geometers’ Sketchpad. In addition to the exam questions Calculus in Motion (and its companion Algebra in Motion) include separate animations illustrating most of the concepts in calculus and algebra. This is a great resource for your classes.

The proofreading and the cross-country conversations with Audrey give me a chance to learn more about the questions.

This year, I really got into 2018 AB 6, the differential equation question. I wrote an exploration (or as the kids would say “worksheet”) on a function very similar to the differential equation in that question. The exploration, which is rather long, includes these topics:

  • Finding the general solution of the differential equation by separating the variables
  • Checking the solution by substitution
  • Using a graphing utility to explore the solutions for all values of the constant of integration, C
  • Finding the solutions’ horizontal and vertical asymptotes
  • Finding several particular solutions
  • Finding the domains of the particular solutions
  • Finding the extreme value of all solutions in terms of C
  • Finding the second derivative (implicit differentiation)
  • Considering concavity
  • Investigating a special case or two

I also hope that in working through this exploration students will learn not so much about this particular function, but how to use the tools of algebra, calculus, and technology to fully investigate any function and to find all its foibles.

Students will need to have studied calculus through differential equations before they start the exploration. I will repost it next January for them.

The exploration is here for you to try. Try it before you look at the solutions. It will give you something to do over the summer – well not all summer, only an hour or so.

As always, I appreciate your feedback and comments. Please share them with me using the reply box below.


There will be only occasional, very occasional, posts over the Summer. More regular posting will begin again in August. Enjoy the Explorations, and, more important, enjoy the Summer!

.



Math vs. the “Real World”

There is a difference between mathematics and the “real world”: In the real world you are allowed to do whatever you want, as long as there is no law against doing it; in mathematics, you cannot do something unless there is a law that says you may.

A question that comes up often on the AP Calculus Community bulletin board concerns the divergence of the improper integral \displaystyle \int_{{-1}}^{1}{{\frac{1}{x}dx}}.

There are several mistakes students make when computing this integral.

First, they may not realize this is an improper integral and compute incorrectly:

\displaystyle \int_{{-1}}^{1}{{\frac{1}{x}dx}}=\ln \left| 1 \right|-\ln \left| {-1} \right|=0-0=0

Since the laws concerning improper integrals do not allow this, you may not do it.

Or, they might think that it does converge to zero by the symmetry of the graph. There is no law (theorem) that permits calculating limits based on the appearance of a graph.

Finally, and most often, they may start out following the rules but go astray. The law says you must find deal with the discontinuity at x = 0 by using one-sided limits:

\displaystyle \int_{{-1}}^{1}{{\frac{1}{x}dx}}=\underset{{a\to 0-}}{\mathop{{\lim }}}\,\int_{{-1}}^{a}{{\frac{1}{x}dx}}+\underset{{b\to 0+}}{\mathop{{\lim }}}\,\int_{b}^{1}{{\frac{1}{x}dx}}

=\underset{{a\to 0-}}{\mathop{{\lim }}}\,\left( {\ln \left| a \right|-\ln \left| 1 \right|} \right)+\underset{{b\to 0+}}{\mathop{{\lim }}}\,\left( {\ln \left| 1 \right|-\ln \left| b \right|} \right)

=\left( {-\infty -0} \right)+\left( {0-(-\infty )} \right)=\infty -(\infty )=0

The mistake is subtler here. It is correct to say that  =\underset{{a\to 0-}}{\mathop{{\lim }}}\,\ln \left| a \right|=-\infty , but what that really means is that the limit does not exist (DNE). Then in the last line above you cannot say

(does not exist) – (does not exist) = 0.

You cannot subtract something that does not exist from something else that does not exist. As soon as you see that one of the limits does not exist, the entire limit does not exist. (That’s the law.) There is no algebra/calculus theorem that permits the addition of two divergent integrals, therefore, it is not correct to add them.

Students need help in understanding this. Here are three ways to think about it.

  1. Infinity is not a number. When you say the integrals equal infinity and negative infinity, you must stop. Just because it looks like something minus the same thing is zero, you cannot do this, because you’re not working with numbers. In fact, the integrals do not exist, so you cannot add them – there’s nothing to add.
  2. “Infinity” is a short, and correct, way of expressing the limits as you approach zero for this function from the right or left. But, you must remember that infinity is a shorthand for DNE, not for some really large number and its opposite.
  3. Infinity minus infinity (\infty -\infty ) is an indeterminate form. Some indeterminate forms of this type converge, if you can find some additional algebra/calculus to do on them (such as L’Hospital’s Rule in some cases). For this example, such algebra/calculus does not exist (no pun intended)

So, in conclusion \displaystyle \int_{{-1}}^{1}{{\frac{1}{x}dx}} does not converge!


This question was discussed recently on the AP Calculus bulletin board. The two items below were included and may help your students understand what’s going on with infinity. The are by Stu Schwartz.

Thank You Stu!



Other Derivative Applications

Some final applications of derivatives

L’Hospital’s Rule 

Locally Linear L’Hospital’s Demonstration of the proof

L’Hospital Rules the Graph

Good Question An AP Exam question that can be used to delve deeper into L’Hospital’s Rule (2008 AB 6)

Related Rate problems

Related Rates Problems 1 

 Related Rate Problems II

Good Question 9  Baseball and Related Rates

Painting a Point  Mostly integration, but with a Related Rate tie-in.


 

 

 

 


 

Continuity

Karl Weierstrass (1815 – 1897) was the mathematician who (finally) formalized the definition of continuity. In that definition was the definition of limit. So, which came first – continuity or limit? The ideas and situations that required continuity could only be formalized with the concept of limit. So, looking at functions that are and are not continuous helps us understand what limits are and why we need them.

In the ideal world I mentioned last week, students would have plenty of work with continuous and not continuous functions. The vocabulary and notation, if not the formal definitions, would be used as early as possible. Then when students got to calculus, they would know the ideas and be ready to formalize the.

Using the definition of continuity to show that a function is or is not continuous at a point is a common question of the AP exams.

Continuity The definition of continuity.

Continuity Should continuity come before limits?

From One Side or the Other One-sided limits and one-sided differentiability

How to Tell Your Asymptote from a Hole in the Graph  From the technology series. Showing holes and asymptotes on a graphing calculator.

Fun with Continuity Defined everywhere and continuous nowhere. Continuous only at a single point.

Intermediate Weather  Using the IVT

Right Answer – Wrong Question Continuity or continuity on its domain

 

 

 

Limits

In an ideal world, I would like to have all students study limits in their precalculus course and know all about them when they get to calculus. Certainly, this would be better than teaching how to calculate derivatives in precalculus (after all derivatives are calculus, not pre… ). Here are a few of my previous posts on limit.

Why Limits?

Finding Limits  How to … and the use of “infinity” vs “DNE”

Dominance  Finding limits the easy way.

Deltas and Epsilons Not tested on the AP Exams; here’s why.

Asymptotes The graphical manifestation of limits at or equal to infinity.

Next Week: Continuity

.

Is this going to be on the exam?

confused-teacherRecently there was a discussion on the AP Calculus Community bulletin board regarding whether it was necessary or desirable to have students do curve sketching starting with the equation and ending with a graph with all the appropriate features – increasing/decreasing, concavity, extreme values etc., etc. – included. As this is kind of question that has not been asked on the AP Calculus exam, should the teacher have his students do problems like these?

The teacher correctly observed that while all the individual features of a graph are tested, students are rarely, if ever, expected to put it all together. He observed that making up such questions is difficult because getting “nice” numbers is difficult.

Replies ran from No, curve sketching should go the way of log and trig tables, to Yes, because it helps connect f. f ‘ and f ‘’, and to skip the messy ones and concentrate on the connections and why things work the way they do. Most people seemed to settle on that last idea; as I did. As for finding questions with “nice” numbers, look in other textbooks and steal borrow their examples.

But there is another consideration with this and other topics. Folks are always asking why such-and-such a topic is not tested on the AP Calculus exam and why not.

The AP Calculus program is not the arbiter of what students need to know about first-year calculus or what you may include in your course. That said, if you’re teaching an AP course you should do your best to have your students learn everything listed in the 2019 Course and Exam Description book and be aware of how those topics are tested – the style and format of the questions. This does not limit you in what else you may think important and want your students to know. You are free to include other topics as time permits.

Other considerations go into choosing items for the exams. A big consideration is writing questions that can be scored fairly.  Here are some thoughts on this by topic.

Curve Sketching

If a question consisted of just an equation and the directions that the student should draw a graph, how do you score it? How accurate does the graph need to be? Exactly what needs to be included?

An even bigger concern is what do you do if a student makes a small mistake, maybe just miscopies the equation? The problem may have become easier (say, an asymptote goes missing in the miscopied equation and if there is a point or two for dealing with asymptotes – what becomes of those points?) Is it fair to the student to lose points for something his small mistake made it unnecessary for him to consider? Or if the mistake makes the question so difficult it cannot be solved by hand, what happens then? Either way, the student knows what to do, yet cannot show that to the reader.

To overcome problems like these, the questions include several parts usually unrelated to each other, so that a mistake in one part does not make it impossible to earn any subsequent points. All the main ideas related to derivatives and graphing are tested somewhere on the exam, if not in the free-response section, then as a multiple-choice question.

(Where the parts are related, a wrong answer from one part, usually just a number, imported into the next part is considered correct for the second part and the reader then can determine if the student knows the concept and procedure for that part.)

Optimization

A big topic in derivative applications is optimization. Questions on optimization typically present a “real life” situation such as something must be built for the lowest cost or using the least material. The last question of this type was in 1982 (1982 AB 6, BC 3 same question). The question is 3.5 lines long and has no parts – just “find the cost of the least expensive tank.”

The problem here is the same as with curve sketching. The first thing the student must do is write the equation to be optimized. If the student does that incorrectly, there is no way to survive, and no way to grade the problem. While it is fair to not to award points for not writing the correct equation, it is not fair to deduct other points that the student could earn had he written the correct equation.

The main tool for optimizing is to find the extreme value of the function; that is tested on every exam. So here is a topic that you certainly may include the full question in you course, but the concepts will be tested in other ways on the exam.

The epsilon-delta definition of limit

I think the reason that this topic is not tested is slightly different. If the function for which you are trying to “prove” the limit is linear, then \displaystyle \delta =\frac{\varepsilon }{\left| m \right|} where m is the slope of the line – there is nothing to do beside memorize the formula. If the function is not linear, then the algebraic gymnastics necessary are too complicated and differ greatly depending on the function. You would be testing whether the student knew the appropriate “trick.”

Furthermore, in a multiple-choice question, the distractor that gives the smallest value of must be correct (even if a larger value is also correct).

Moreover, finding the epsilon-delta relationship is not what’s important about the definition of limit. Understanding how the existence of such a relationship say “gets closer to” or “approaches” in symbols and guarantees that the limit exists is important.

Volumes using the Shell Method

I have no idea why this topic is not included. It was before 1998. The only reason I can think of is that the method is so unlike anything else in calculus (except radial density), that it was eliminated for that reason.

This is a topic that students should know about. Consider showing it too them when you are doing volumes or after the exam. Their college teachers may like them to know it.

Integration by Parts on the AB exam

Integration by Parts is considered a second semester topic. Since AB is considered a one-semester course, Integration by Parts is tested on the BC exam, but not the AB exam. Even on the BC exam it is no longer covered in much depth: two- or more step integrals, the tabular method, and reduction formulas are not tested.

This is a topic that you can include in AB if you have time or after the exam or expand upon in a BC class.

Newton’s Method, Work, and other applications of integrals and derivatives

There are a great number of applications of integrals and derivatives. Some that were included on the exams previously are no longer listed. And that’s the answer right there: in fairness, you must tell students (and teachers) what applications to include and what will be tested. It is not fair to wing in some new application and expect nearly half a million students to be able to handle it.

Also, remember when looking through older exams, especially those from before 1998, that some of the topics are not on the current course description and will not be tested on the exams.

Solution of differential equations by methods other than separation of variables

Differential equations are a huge and important area of calculus. The beginning courses, AB and BC, try to give students a brief introduction to differential equations. The idea, I think, is like a survey course in English Literature or World History: there is no time to dig deeply, but the is an attempt to show the main parts of the subject.


While the choices are somewhat arbitrary, the College Board regularly consults with college and university mathematics departments about what to include and not include. The relatively minor changes in the new course description are evidence of this continuing collaboration. Any changes are usually announced two years in advance. (The recent addition of density problems unannounced, notwithstanding.) So, find a balance for yourself. Cover (or better yet, uncover) the ideas and concepts in the course description and if there if a topic you particularly like or think will help your students’ understanding of the calculus, by all means include it.


PS: Please scroll down and read Verge Cornelius’ great comment below.


Happy Holiday to everyone. There is no post scheduled for next week; I will resume in the new year. As always, I like to hear from you. If you have anything calculus-wise you would like me to write about, please let me know and I’ll see what I can come up with. You may email me at lnmcmullin@aol.com


.