2019 CED Unit 1 – Limits and Continuity

This is the first of a series of blog posts that I plan to write over the next few months, staying a little ahead of where you are so you can use anything you find useful in your planning. Look for this series every 2 – 4 weeks.

Unit 1 contains topics on Limits and Continuity. (CED – 2019 p. 36 – 50). These topics account for about 10 – 12% of questions on the AB exam and 4 – 7% of the BC questions.

Logically, limits come before continuity since limit is used to define continuity. Practically and historically, continuity comes first. Newton and Leibnitz did not have the concept of limit the way we use it today. It was in the early 1800’s that the epsilon-delta definition of limit was first given by Bolzano (whose work was overlooked) and then by Cauchy and Weierstrass. But their formulation did not use the word “limit”, rather the use was part of their definition of continuity. Only later was it pulled out as a separate concept and then returned to the definition of continuity as a previously defined term.

Students should have plenty of experience in their math courses before calculus with functions that are and are not continuous. They should know the names of the types of discontinuities – jump, removable, infinite, etc. As you go through this unit, you may want to quickly review these terms and concepts as they come up.

(As a general technique, rather than starting the year with a week or three of review – which the students need but will immediately forget again – be ready to review topics as they come up during the year as they are needed – you will have to do that anyway. See Getting Started #2)

Topics 1.1 – 1.9: Limits

Topic 1.1: Suggests an introduction to calculus to give students a hint of what’s coming. See Getting Started #3

Topic 21.: Proper notation and multiple-representations of limits.

There is an exclusion statement noting that the delta-epsilon definition of limit is not tested on the exams, but you may include it if you wish. The epsilon-delta definition is not tested probably because it is too difficult to write good questions. Specifically, (1) the relationship for a linear function is always  \delta =\frac{\varepsilon }{{\left| m \right|}}  where m is the slope and is too complicated to compute for other functions, and (2) for a multiple-choice question the smallest answer must be correct. (Why?)

Topic 1.3: One-sided limits.

Topic 1.4: Estimating limits numerically and from tables.

Topic 1.5: Algebraic properties of limits.

Topic 1.6: Simplifying expressions to find their limits. This can and should be done along with learning the other concepts and procedures in this unit.

Topic 1.7: Selecting the proper procedure for finding a limit. The first step is always to substitute the value into the limit. If this comes out to be number than that is the limit. If not, then some manipulation may be required. This can and should be done along with learning the other concepts and procedures in this unit.

Topic 1.8: The Squeeze Theorem is mainly used to determine \underset{{x\to 0}}{\mathop{{\lim }}}\,\frac{{\sin \left( x \right)}}{x}=1 which in turn is used in finding the derivative of the sin(x). (See Why Radians?) Most of the other examples seem made up just for exercises and tests. (See 2019 AB 6(d)). Thus, important, but not too important.

Topic 1.9: Connecting multiple-representations of limit. This can and should be done along with learning the other concepts and procedures in this unit. Dominance, Topic 15, may be included here as well (EK LIM-2.D.5)

Topics 1.10 – 1.16 Continuity

Topic 1.10: Here you can review the different types of discontinuities with examples and graphs.

Topic 1.11: The definition of continuity. The EK statement does not seem to use the three-hypotheses definition. However, for the limit to exist and for f(c) to exist, they must be real numbers (i.e. not infinite). This is tested often on the exams, so students should have practice with verifying that (all three parts of) the hypothesis are met and including this in their answers.

Topic 1.12: Continuity on an interval and which Elementary Functions are continuous for all real numbers.

Topic 1.13: Removable discontinuities and handing piecewise – defined functions

Topic 1.14: Vertical asymptotes and unbounded functions. Here be sure to explain the difference between limits “equal to infinity” and limits that do not exist (DNE). See Good Question 5: 1998 AB2/BC2.

Topic 1.15: Limits at infinity, or end behavior of a function. Horizontal asymptotes are the graphical manifestation of limits at infinity or negative infinity. Dominance is included here as well (EK LIM-2.D.5)

Topic 1.16: The Intermediate Value Theorem (IVT) is a major and important result of a function being continuous. This is perhaps the first Existence Theorem students encounter, so be sure to stop and explain what an existence theorem is.

The suggested number of 40 – 50 minute class periods is 22 – 23 for AB and 13 – 14 for BC. This includes time for testing etc. If time seems to be a problem you can probably combine topics 3 – 5, topics 6 -7, topics 11 – 12. Topics 6, 7, and 9 are used with all the limit work.

There are three other important limits that will be coming in later Units:

The definition of the derivative in Unit 2, topics 1 and 2

L’Hospital’s Rule in Unit 4, topic 7

The definition of the definite integral in Unit 6, topic 3.

Posts on Continuity

CONTINUITY To help understand limits it is a good idea to look at functions that are not continuous. Historically and practically, continuity should come before limits. On the other hand, the definition of continuity requires knowing about limits. So, I list continuity first. The modern definition of limit was part of Weierstrass’ definition of continuity.

Continuity (8-13-2012)

Continuity (8-21-2013) The definition of continuity.

Continuous Fun (10-13-2015) A fuller discussion of continuity and its definition

Right Answer – Wrong Question (9-4-2013) Is a function continuous even if it has a vertical asymptote?

Asymptotes (8-15-2012) The graphical manifestation of certain limits

Fun with Continuity (8-17-2012) the Diriclet function

Far Out! (10-31-2012) When the graph and dominance “disagree” From the Good Question series

Posts on Limits

Why Limits? (8-1-2012)

Deltas and Epsilons (8-3-2012) Why this topic is not tested on the AP Calculus Exams.

Finding Limits (8-4-2012) How to…

Limit of Composite Functions

Dominance (8-8-2012) See limits at infinity

Determining the Indeterminate (12-6-2015) Investigating an indeterminate form from a differential equation. From the Good Question series.

Locally Linear L’Hôpital (5-31-2013) Demonstrating L’Hôpital’s Rule (a/k/a L’Hospital’s Rule)

L’Hôpital’s Rules the Graph (6-5-2013)

Here are links to the full list of posts discussing the ten units in the 2019 Course and Exam Description.

2019 CED – Unit 1: Limits and Continuity

2019 CED – Unit 2: Differentiation: Definition and Fundamental Properties.

2019 CED – Unit 3: Differentiation: Composite , Implicit, and Inverse Functions

2019 CED – Unit 4 Contextual Applications of the Derivative  Consider teaching Unit 5 before Unit 4

2019 – CED Unit 5 Analytical Applications of Differentiation  Consider teaching Unit 5 before Unit 4

2019 – CED Unit 6 Integration and Accumulation of Change

2019 – CED Unit 7 Differential Equations  Consider teaching after Unit 8

2019 – CED Unit 8 Applications of Integration   Consider teaching after Unit 6, before Unit 7

2019 – CED Unit 9 Parametric Equations, Polar Coordinates, and Vector-Values Functions 

2019 CED Unit 10 Infinite Sequences and Series

Limits – They Make the Calculus Work.

In an ideal world, I would like to have all students study limits in their pre-calculus course and know all about them when they get to calculus. Certainly, this would be better than teaching how to calculate derivatives in pre-calculus (after all derivatives are calculus, not pre-calculus).

Limits are the foundation of the calculus. Continuity, an important property of functions, depends on limits. All derivatives and all definite integrals are limits. For AP Calculus students need a good intuitive understanding of limits, what they mean, and how to find them The formal (delta-epsilon) definition is not tested and need not be taught, however, do not feel that you have to avoid it. If your students can handle it, let them try.

Here are a few of my previous posts on limits.

Why Limits?

Finding Limits  How to … and the use of “infinity” vs “DNE”

Dominance  Finding limits the easy way.

Deltas and Epsilons Not tested on the AP Exams; here’s why.

Asymptotes The graphical manifestation of limits at or equal to infinity.

Next Week: Continuity

Update of my post of August 15, 2017.

Far Out!

A monster problem for Halloween.

A while ago I suggested you look at \displaystyle \underset{x\to \infty }{\mathop{\lim }}\,\frac{\ln \left( {{x}^{5}} \right)}{{{x}^{0.02}}} , which using the dominance idea is zero. Of course your students may try graphing or a table. Here’s the graph done by a TI-Nspire CAS. Note the scales.

This is not the way to go. Since the function is increasing near the origin, but the limit at infinity is zero there must be a maximum point where the function starts decreasing. And as the expression can never be negative once x > 1, there must be a point of inflection where the graph becomes concave up and can thereafter approach the x-axis from above as a horizontal asymptote. The maximum can be found by hand which makes for some great algebra manipulation practice:

\displaystyle \frac{d}{dx}\left( \frac{\ln \left( {{x}^{5}} \right)}{{{x}^{0.02}}} \right)=\frac{{{x}^{0.02}}\tfrac{5{{x}^{4}}}{{{x}^{5}}}-\ln \left( {{x}^{5}} \right)\left( 0.02{{x}^{-0.98}} \right)}{{{x}^{0.04}}}

\displaystyle \frac{d}{dx}\left( \frac{\ln \left( {{x}^{5}} \right)}{{{x}^{0.02}}} \right)=\frac{{{x}^{-0.98}}\left( 5-\left( 0.10 \right)\ln \left( x \right) \right)}{{{x}^{0.04}}}=\frac{50-\ln \left( x \right)}{10{{x}^{1.02}}}

Setting this equal to zero and solving gives x={{e}^{50}}\approx 5.185\times {{10}^{21}}

The second derivative is \displaystyle \frac{{{d}^{2}}}{d{{x}^{2}}}\left( \frac{\ln \left( {{x}^{5}} \right)}{{{x}^{0.02}}} \right)=\frac{-510+10.2\ln \left( x \right)}{100{{x}^{2.02}}}

and is zero when x\displaystyle {{e}^{\frac{520}{10.2}}}\approx 1.382\times {{10}^{22}}

Okay, I skipped a few steps here, but you can challenge your students with that. Since we’re really interested in the solution here more than the solving ,this is really a good place to use a CAS calculator.

The first line in the figure above defines the function to save typing it each time. The second line finds the x-coordinate of the maximum point (how do we know this is a maximum?) and the third finds the x-coordinate of the point of inflection.  Much simpler this way!

Take a minute to consider the numbers. They are BIG! In fact, if the units on our graph paper are centimeters, then the maximum point is a little over 5,480 light-years away from the origin! The point of inflection is about 2.665 times farther at more than 14,607 light-years away!

Meanwhile the maximum value is only 91.9699 cm. That’s right centimeters, less than a meter. And the y-coordinate of the point of inflection is about 91.9524 cm. A drop of 0.0175 cm. in a horizontal distance of a little over 9,127 light-years.

Some problems are a lot less scary if done with technology.


When considering functions made up of the sums, differences, products or quotients of different sorts of functions (polynomials, exponentials and logarithms), or different powers of the same sort of function we  say that one function dominates the other. This means that as x approaches infinity or negative infinity, the graph will eventually look like the dominating function.

  • Exponentials dominate polynomials,
  • Polynomials dominate logarithms,
  • Among exponentials, larger bases dominate smaller,
  • Among polynomials, higher powers dominate lower,

For example, consider the function x{{e}^{x}}. The exponential function dominates the polynomial. As x\to \infty , the graph looks like an exponential approaching infinity; that is, \displaystyle \underset{x\to \infty }{\mathop{\lim }}\,x{{e}^{x}}=\infty . As  x\to -\infty the graph looks like an exponential with very small but still positive values; that is \displaystyle \underset{x\to -\,\infty }{\mathop{\lim }}\,x{{e}^{x}}=0.

Another example, consider a rational function (the quotient of two polynomials). If the numerator is of higher degree than the denominator, as x\to \pm \infty the numerator dominates, and the limit is infinite. If the denominator is of higher degree, the denominator dominates, and the limit is zero. (And if they are of the same degree, then the limit is the ratio of the leading coefficients. Dominance does not apply.)

Dominance works in other ways as well. Consider the graphs of y=3{{x}^{2}} and y={{2}^{x}}. In a standard graphing window, the graphs appear to intersect twice. But on the right side the exponential function is lower than the polynomial. Look farther out and farther up, the exponential dominates and will eventually lie above the polynomial   (after x = 7.334).

Here’s an example that pretty much has to be done using the dominance approach.

\displaystyle \underset{x\to \infty }{\mathop{\lim }}\,\frac{\ln \left( {{x}^{5}} \right)}{{{x}^{0.02}}}=0

The polynomial function in the denominator, even with the very small exponent, will dominate the logarithm function. The denominator will eventually get larger than the numerator and drive the quotient towards zero. We will return to this function when we know about finding maximums and points of inflection and find where it starts decreasing. For more on this see my post Far Out!

Finding Limits

Ways to find limits (summary):

  1. If the function is continuous at the value x approaches, then substitute that value and the number you get will be the limit.
  2. If the function is not continuous at the value approaches, then
    1. If you get something that is not zero divided by zero, the limit does not exist (DNE) or equals infinity (see below).
    2. If you get \frac{0}{0} or \frac{\infty }{\infty } the limit may exist. Simplify by factoring, or using different trig functions. Later in the year a method called L’Hôpital’s Rule can often be used in this situation.
  3. Dominance is a quick way of finding many limits. Exponentials dominate, polynomials, polynomials dominate logarithms, higher powers dominate lower powers. The next post will give some hints about dominance.

Infinity is not a number, but it often is used as if it were. When we say a limit is infinity, what we mean is that the function increases without bound, or there is some x-value that will make the expression larger than any number you choose. Writing things like \infty -\infty =0,\frac{\infty }{\infty }=1,\infty +\infty =2\infty  are common mistakes.

DNE or Infinity?  \displaystyle \underset{x\to 3}{\mathop{\lim }}\,\frac{1}{{{\left( x-3 \right)}^{2}}} does not exist, and DNE is a correct answer. However, it is a bit better to say the limit is (equals) infinity, indicating that the expression gets larger without bound as x approaches 3. Both answers will get credit on an AP exam.  \displaystyle \underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-3} DNE since the one-sided limits (from the left and from the right) are different.  Only DNE gets credit here.

Take a look at this AP question 1998 AB-2: In (a) students found that \displaystyle \underset{x\to \infty }{\mathop{\lim }}\,2x{{e}^{2x}}=\infty \text{ or }DNE, in (b) they found the minimum value of 2x{{e}^{2x}}  is -{{e}^{-1}} and in (c) they had to state the range of the function is [-{{e}^{-1}},\infty )\text{ or }x>-{{e}^{-1}}. Thus making the students show they knew that this kind of DNE is the kind where the value increases without bound.