An Exploration of an Interesting Function – Answers

1. Solve the differential equation by separating the variable and verify that the general solution of the differential equation is $y(x) = 3 - \frac{2}{x^2 + C}$ where C is a constant.

$$(y-3)^{-2} dy = \int x dx$$

-(y-3)^{-1} = $\frac{1}{2}x^2 + C_1$
 $y-3 = \frac{-2}{x^2 + C}$, where $C = \frac{C_1}{2}$
 $y = 3 - \frac{2}{x^2 + C}$

2. Check the solution by substituting the solution and its first derivative into the differential equation.

$$\frac{dy}{dx} = \left(x^2 + C\right)^{-2} \left(2x\right)$$

Substituting into the differential equation gives

$$(x^{2}+C)^{-2}(2x) = x\left(\left(3-\frac{2}{x^{2}+C}\right)-3\right)^{2}$$

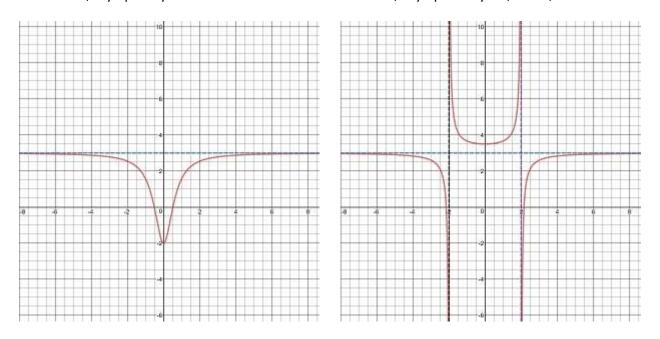
Which checks

3. Type I: *C* > 0

C = 0.4; asymptote y = 3

C = -4, Asymptotes: y = 3, x = -2, x = 2

Type II: *C* < 0



4. The vertical asymptotes will occur when the denominator $x^2 + C = 0$. This can only happen when C < 0 (Type II). Their equations are $x = \sqrt{-C}$ and $x = -\sqrt{-C}$.

5. General solutions

a.

$$f(0) = -2$$

$$-2 = 3 - \frac{2}{(0)^{2} + C}$$

$$C = \frac{2}{5}$$

$$y = 3 - \frac{2}{x^{2} + \frac{2}{5}}$$

b. $f(-1) = 4; \quad y = 3 - \frac{2}{x^{2} - 3}$
c. $f(3) = 1; \quad y = 3 - \frac{2}{x^{2} - 8}$

- 6. Domains
 - a. $-\infty < x < \infty$ or All real numbers.
 - b. The domain is the interval between the asymptotes: $-\sqrt{3} < x < \sqrt{3}$ or the open interval $\left(-\sqrt{3},\sqrt{3}\right)$
 - c. The domain is the interval to the right of the right-side asymptote: $x > \sqrt{8}$ or the open interval $(\sqrt{8}, \infty)$
- 7. Extreme value
 - a. $\frac{dy}{dx} = 0$ when x = 0 and changes sign from negative to positive there, so by the first derivative test there is a minimum value at x = 0.
 - b. The minimum point is $\left(0,3-\frac{2}{C}\right)$.

c. If C = 0, then $3 - \frac{2}{C}$ is undefined. The $\lim_{x \to 0} \left(3 - \frac{1}{x^2 + 0}\right) = -\infty$, so the graph has the y-axis as its single vertical asymptote.

- d. Minimum points
 - i. (0, −2)
 - ii. (3, 11/3) or (0, 3.667)
 - iii. (0, 13/4) or (3.25)

8. Concavity

a.
$$\frac{d}{dx} \left(x \left(y - 3 \right)^2 \right) = (1) \left(y - 3 \right)^2 + 2x \left(y - 3 \right) \frac{dy}{dx}$$
$$= \left(y - 3 \right)^2 + 2x \left(y - 3 \right) \left(x \left(y - 3 \right)^2 \right)$$
$$= \left(y - 3 \right)^2 \left(1 + 2x^2 y - 6x^2 \right)$$
b. At (0, -2),
$$\frac{d^2 y}{dx^2} = \left(-2 - 3 \right)^2 \left(1 + 2(0^2)(-2) - 6(0)^2 \right) = 25$$
. Therefore, concave up. At (-1, 4),
$$\frac{d^2 y}{dx^2} = \left(4 - 3 \right)^2 \left(1 + 2(-1)^2 (4) - 6(-1)^2 \right) = 3$$
. Therefore, concave up. At (3, 1),
$$\frac{d^2 y}{dx^2} = \left(1 - 3 \right)^2 \left(1 + 2 \left(3^2 \right) (1) - 6 \left(3^2 \right) \right) = -140$$
. Therefore, concave down. These all agree with the graph.

- 9. The special case y = 3
 - a. Since $\frac{dy}{dx} = 0$ substituting gives 0 = x(3-3) which checks.
 - b. Using the point (4,3) as an initial point: $3=3-\frac{2}{4^2+C}$ simplifies to $0=-\frac{2}{16+C}$. this equation has no solution.
 - c. $\lim_{C \to \infty} \left(3 \frac{2}{x^2 + C} \right) = 3$ and $\lim_{C \to -\infty} \left(3 \frac{2}{x^2 + C} \right) = 3$
 - d. In the original solution, to separate the variables it is necessary to divide by $(y-3)^2$. This is only permissible if $(y-3)^2 \neq 0$ or $y \neq 3$.