An Exploration of an Interesting Function - Answers

1. Solve the differential equation by separating the variable and verify that the general solution of the differential equation is $y(x)=3-\frac{2}{x^{2}+C}$ where C is a constant.

$$
\begin{aligned}
\int(y-3)^{-2} d y & =\int x d x \\
-(y-3)^{-1} & =\frac{1}{2} x^{2}+C_{1} \\
y-3 & =\frac{-2}{x^{2}+C}, \text { where } C=\frac{C_{1}}{2} \\
y & =3-\frac{2}{x^{2}+C}
\end{aligned}
$$

2. Check the solution by substituting the solution and its first derivative into the differential equation.

$$
\frac{d y}{d x}=\left(x^{2}+C\right)^{-2}(2 x)
$$

Substituting into the differential equation gives

$$
\left(x^{2}+C\right)^{-2}(2 x)=x\left(\left(3-\frac{2}{x^{2}+C}\right)-3\right)^{2}
$$

Which checks
3. Type I: $C>0$
$C=0.4 ;$ asymptote $\mathrm{y}=3$

Type II: $C<0$
$C=-4$, Asymptotes: $\mathrm{y}=3, \mathrm{x}=-2, \mathrm{x}=2$

4. The vertical asymptotes will occur when the denominator $x^{2}+C=0$. This can only happen when $C<0$ (Type II). Their equations are $x=\sqrt{-C}$ and $x=-\sqrt{-C}$.
5. General solutions
a.

$$
\begin{aligned}
f(0) & =-2 \\
-2 & =3-\frac{2}{(0)^{2}+C} \\
C & =\frac{2}{5} \\
y & =3-\frac{2}{x^{2}+\frac{2}{5}}
\end{aligned}
$$

b. $\quad f(-1)=4 ; \quad y=3-\frac{2}{x^{2}-3}$
c. $\quad f(3)=1 ; \quad y=3-\frac{2}{x^{2}-8}$
6. Domains
a. $-\infty<x<\infty$ or All real numbers.
b. The domain is the interval between the asymptotes: $-\sqrt{3}<x<\sqrt{3}$ or the open interval $(-\sqrt{3}, \sqrt{3})$
c. The domain is the interval to the right of the right-side asymptote: $x>\sqrt{8}$ or the open interval $(\sqrt{8}, \infty)$
7. Extreme value
a. $\frac{d y}{d x}=0$ when $x=0$ and changes sign from negative to positive there, so by the first derivative test there is a minimum value at $x=0$.
b. The minimum point is $\left(0,3-\frac{2}{C}\right)$.
c. If $C=0$, then $3-\frac{2}{C}$ is undefined. The $\lim _{x \rightarrow 0}\left(3-\frac{1}{x^{2}+0}\right)=-\infty$, so the graph has the y-axis as its single vertical asymptote.
d. Minimum points
i. $(0,-2)$
ii. $(3,11 / 3)$ or $(0,3.667)$
iii. $(0,13 / 4)$ or (3.25)
8. Concavity

$$
\text { a. } \begin{aligned}
\frac{d}{d x}\left(x(y-3)^{2}\right) & =(1)(y-3)^{2}+2 x(y-3) \frac{d y}{d x} \\
& =(y-3)^{2}+2 x(y-3)\left(x(y-3)^{2}\right) \\
& =(y-3)^{2}\left(1+2 x^{2} y-6 x^{2}\right)
\end{aligned}
$$

b. At $(0,-2), \frac{d^{2} y}{d x^{2}}=(-2-3)^{2}\left(1+2\left(0^{2}\right)(-2)-6(0)^{2}\right)=25$. Therefore, concave up.

At $(-1,4), \frac{d^{2} y}{d x^{2}}=(4-3)^{2}\left(1+2(-1)^{2}(4)-6(-1)^{2}\right)=3$. Therefore, concave up.
At $(3,1), \frac{d^{2} y}{d x^{2}}=(1-3)^{2}\left(1+2\left(3^{2}\right)(1)-6\left(3^{2}\right)\right)=-140$. Therefore, concave down.
These all agree with the graph.
9. The special case $y=3$
a. Since $\frac{d y}{d x}=0$ substituting gives $0=x(3-3)$ which checks.
b. Using the point $(4,3)$ as an initial point: $3=3-\frac{2}{4^{2}+C}$ simplifies to $0=-\frac{2}{16+C}$. this equation has no solution.
c. $\lim _{C \rightarrow \infty}\left(3-\frac{2}{x^{2}+C}\right)=3$ and $\lim _{C \rightarrow-\infty}\left(3-\frac{2}{x^{2}+C}\right)=3$
d. In the original solution, to separate the variables it is necessary to divide by $(y-3)^{2}$. This is only permissible if $(y-3)^{2} \neq 0$ or $y \neq 3$.

