Implicit Differentiation

Often a relation (an expression in x and y), that has a graph but is not a function, needs to be analyzed. But the relation is not or cannot be solved for y. What to do? The answer is to use the technique of implicit differentiation. Assume there is a way to solve for y and differentiate using the Chain Rule. Whenever you get to the y,“differentiate” it by writing dy/dx. Then solve for dy/dx

Here are several previous posts on this topic and how to go about using it.

Implicit Differentiation

Implicit Differentiation and Inverses

Implicit differentiation of parametric equations   These are BC topics

A Vector’s Derivative  These are BC topics

_____________________________________________________

The Chain Rule

Most of the function students are faced with in beginning calculus are compositions of the Elementary Functions. The Chain Rule allows you to differentiate composite functions easily. The posts listed below are ways to introduce and use the Chain Rule.

Experimenting with a CAS – Chain Rule  Using a CAS to discover the Chain Rule

Power Rule Implies Chain Rule and Foreshadowing the Chain Rule the same ideas.

The Chain Rule


Revised from 9-19-2017

Derivative Formulae

Maria Gaetana Agnesi

So, no one wants to do complicated limits to find derivatives. There are easier ways of course. There are a number of quick ways (rules, formulas) for finding derivatives of the Elementary Functions and their compositions. Here are some ways to introduce these rules; these are the subject of this week’s review of past posts.

Why Radians?

The Derivative I        Guessing the derivatives from the definition

The Derivative II      Using difference quotients to graph and guess

The Derivative Rules I    The Power Rule

The Derivative Rules II       Another approach to the Product Rule from my friend Paul Foerster

The Derivative Rules III     The Quotient Rule developed using the Power Rule, an approach first suggested  by Maria Gaetana Agnesi (1718 – 1799) who was helping her brother learn the calculus.

Next week: The Chain Rule.


 

 

 

 

Revised from 9-12-2017

Difference Quotients

Difference quotients are the path to the definition of the derivative. Here are three posts exploring difference quotients.

Difference Quotients I  The forward and backward difference quotients

Difference Quotients II      The symmetric difference quotient and seeing the three difference quotients in action.  Showing that the three difference quotients converge to the same value.

Seeing Difference Quotients      Expands on the post immediately above and shows some numerical and graphical approaches using calculators or the Desmos graph

 Tangents and Slopes You can use this Desmos app now to preview some of the things that he tangent line can tell us about the graph of a function or save (or reuse) it for later when concentrating on graphs. Discuss slope in relation to increasing, decreasing, concavity, etc.

At Just the Right Time

Stamp out Slope-intercept Form


 

 

 

 

Updated from a post of 9-5-2017


 

Local Linearity

If you use your calculator or graphing program and zoom-in of the graph of a function (with equal zoom factors in both directions), the graph eventually looks like a line: the graph appears to be straight. This property is called Local Linearity. The slope of this line is the number called the derivative. (There are exceptions: if the graph never appears linear, then no derivative exists at that point.) Local Linearity is the graphical manifestation of differentiability. 

To find this slope, we need to zoom-in numerically. Zooming-in numerically is accomplished by finding the slope of a secant line, a line that intersects the graph twice near the point we are interested in. Then finding the limit of that slope as the two points come closer to our point. This limit is the derivative. It is also the slope of the line tangent to the function at the point. 

While limit is what makes all of the calculus work, people usually think of calculus as starting with the derivative. The first problem in calculus is finding the slope of a line tangent to a graph at a point and then writing the equation of that tangent line. The slope is called the derivative and a function whose derivative exists is said to be differentiable. 

This week’s posts start with local linearity and tangent lines. They lead to the difference quotient and the equation of the tangent line.

Local Linearity I

Local Linearity II      Working up to difference quotient. The next post explains this in more detail.

Tangent Lines approaching difference quotients on calculator by graphing tan line.

Next week: Difference Quotients.


 

 

 

Revised from a post of August 29, 2017


 

Continuity

Karl Weierstrass (1815 – 1897) was the mathematician who (finally) formalized the definition of continuity. Included in that definition was the epsilon-delta definition of limit. This definition has been pulled out, so to speak, and now is usually presented on its own. So, which came first – continuity or limit? The ideas and situations that required continuity could only be formalized with the concept of limit. So, looking at functions that are or are not continuous helps us understand what limits are and why we first need them.

In the ideal world, students would have plenty of work with continuous and not continuous functions before starting the calculus. The vocabulary and notation, if not the formal definitions, would be used as early as possible. Then when students got to calculus, they would know the ideas and be ready to formalize the ideas.

The Intermediate Value Theorem (IVT) is an important property of continuous functions.

Using the definition of continuity to show that a function is or is not continuous at a point is a common question of the AP exams, as is the IVT.

Continuity The definition of continuity.

Continuity Should continuity come before limits?

From One Side or the Other One-sided limits and one-sided differentiability

How to Tell Your Asymptote from a Hole in the Graph  From the technology series. Showing holes and asymptotes on a graphing calculator.

Fun with Continuity Defined everywhere and continuous nowhere. Continuous only at a single point.

Theorems The Intermediate Value Theorem (IVT) and suggestions on teaching theorems.

Intermediate Weather  Using the IVT

Right Answer – Wrong Question Continuity or continuity “on its domain”?


 

 

 

 

 

Revised from a post of August 22, 2017


 

Limits – They Make the Calculus Work.

In an ideal world, I would like to have all students study limits in their pre-calculus course and know all about them when they get to calculus. Certainly, this would be better than teaching how to calculate derivatives in pre-calculus (after all derivatives are calculus, not pre-calculus).

Limits are the foundation of the calculus. Continuity, an important property of functions, depends on limits. All derivatives and all definite integrals are limits. For AP Calculus students need a good intuitive understanding of limits, what they mean, and how to find them The formal (delta-epsilon) definition is not tested and need not be taught, however, do not feel that you have to avoid it. If your students can handle it, let them try.

Here are a few of my previous posts on limits.

Why Limits?

Finding Limits  How to … and the use of “infinity” vs “DNE”

Dominance  Finding limits the easy way.

Deltas and Epsilons Not tested on the AP Exams; here’s why.

Asymptotes The graphical manifestation of limits at or equal to infinity.

Next Week: Continuity


Update of my post of August 15, 2017.