Theorems and Axioms

Continuing with some thoughts on helping students read math books, we will now look at the main things we find in them in addition to definitions which we discussed previously: theorems and axioms.

An implication is a sentence in the form IF (one or more things are true), THEN (something else is true). The IF part gives a list of requirements, so to speak, and when the requirements are all met we can be sure the THEN part is true. The fancy name for the IF part is hypothesis; the THEN part is called the conclusion.

Implications are sometimes referred to as conditional statements – the conclusion is true based on the conditions in the hypothesis.

An example from calculus: If a function is differentiable at a point, then it is continuous at that point. The hypothesis is “a function is differentiable at a point”, the conclusion is “the function is continuous at that point.”

This is often shortened to, “Differentiability implies continuity.” Many implications are shortened to make them easier to remember or just to make the English flow better. When students get a new idea in a shortened form, they should be sure to restate it so that the IF part and the THEN part are clear to them. Don’t let them skip this.

Related to any implication are three other implications. The 4 related implications are:

  1. The original implication: if p, then q.
  2. The converse is formed by interchanging the hypothesis and the conclusion of the original implication: if q, then p. Even if the implication is true, the converse may be either true or false. For example, the converse of the example above, if a function is continuous then it is differentiable, is false.
  3. The inverse is formed by negating both the hypothesis and the conclusion: if  p is false, then q is false. For our example: if a function is not differentiable, then it is not continuous. As with the converse, the inverse may be either true or false. The example is false.
  4. Finally, the contrapositive is formed by negating both the original hypothesis and conclusion and interchanging them, if q is false, then p is false. For our example the contrapositive is “If a function is not continuous at a point, then it is it is not differentiable there.” This is true, and it turns out a useful. One of the quickest ways of determining that a function is not differentiable is to show that it is not continuous. Another example is a theorem that say if an infinite series, an, converges, then \displaystyle \underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=0. This is most often used in the contrapositive form when we find a series for which  \displaystyle \underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}\ne 0; we immediately know that it does not converge (called the nth-term test for divergence).

The original statement and its contrapositive are both true or both false. Likewise, the converse and the inverse are both true or both false.

Any of the 4 types of statements could be taken as the original and the others renamed accordingly. For example, the original implication is the converse of the converse; the contrapositive of the inverse is the converse, and so on.

Definitions are implications for which the statement and its converse are both true. This is the real meaning of the reversibility of definitions. For this reason, definitions are sometimes called bi-conditional statements.

Axioms and Theorems

There are two kinds of if …, then… statements, axioms (also called assumptions or postulates) and theorems. Theorems can be proved to be true; axioms are assumed to be true without proof. A proof is a chain of reasoning starting from axioms, definitions, and/or previously proved theorems that convince us that the theorem is true. (More on proof in a future post.)

It would be great if everything could be proved, but how can you prove the first few theorems? Thus, mathematical reasoning starts with (a few carefully chosen) axioms and accepts them as true without proof. Everything else should be proved. If you can prove it, it should not be an axiom.

Theorems abound. All of the important ideas, concepts, “laws” and formulas of calculus are theorems.  You will probably see few, if any, axioms in a calculus book, since they came long before in the study of algebra and geometry.

Learning Theorems

When teaching students and helping them read and understand their textbook, it is important that they understand what a theorem is and how it works. They should understand what the hypothesis and conclusion are and how they relate to each other. They should understand how to check that the parts of the hypothesis are all true about the function or situation under consideration, before they can be sure the conclusion is true.

For the AP teachers this kind of thing is tested on the exams. See 2005 AB-5/BC-5 part d, or 2007 AB-3 parts a and b (which literally almost no one got correct). These questions can be used as models for making up your own questions of other theorems.

Calculator Use on the AP Exams

In my final post on reviewing for the AP Calculus exams I return to calculator use.

I hope everyone has been using calculators all year long. (My opinion is that students should be given a CAS calculator, or CAS computer program, or now even an iPad CAS app on the first day of Algebra 1 before they get their books – or earlier. But we’ll save that for another post.)

The exam will not instruct students when or if to use a calculator on a particular question. Sometimes the multiple-choice answers will provide a big hint (if the choices are decimals), other times not. On the free-response questions if the problem can be done by calculator it is expected that students will use their calculator – they don’t have to, but there is no credit for finding an antiderivative or a derivative by hand. It is the numerical answer that counts.

Here again is what students are allowed to do on the exams with their calculator without showing any additional work.

  • Graph a function in a window. They may have to determine the window themselves.
  • Solve an equation. This is usually best done by graphing both sides and finding the point(s) of intersection, but any equation solving routine in the calculator may be used.
  • Find the numerical value of a derivative at a point.
  • Evaluate a definite integral.

For the last three items students should write what they are doing on their paper. That is, write the equation, the definite integral or {v}'\left( 3.5 \right)= followed by the number from their calculator. Use standard notation not calculator syntax.

For anything else, the work must be shown. Calculators can find extreme values, but readers will look for the appropriate “calculus” and not just the answer. In fact, a correct answer with no supporting work may not receive any credit.

Another handy skill is to be able to store and recall the numbers found without retyping them on their calculator. This saves time, students are less likely to make a typing mistake, and it avoids round off error.

Answers from calculators should be correct to three places after the decimal point. This does not mean they must be rounded or truncated; more places may be given as long as the first three are correct.

Remember that arithmetic simplification is not required. Only answers from calculators need to be given as decimals. If the computation gives 1 + 1, or 6\pi  or ½ + cos(3) or \sin \left( \tfrac{\pi }{6} \right) then the answer may be left that way. This also applies to a long expression resulting from a Riemann sum. Once the answer consists of all numbers, stop! You cannot make the answer any better and if you make a mistake or type the wrong key, then the final answer will be wrong and the point will be lost.

Be careful not to round too soon. If, for example, a student find the limits of integration and rounds them to three places to write on their paper, they will have earned the point given for limits of integration. BUT if these rounded values are then used to compute the integral and the rounding causes the final answer to not be correct to three places then they will lose the answer point.

Finally, get a copy of the directions for the two parts of the exam and go over them with your students before the test. Be sure students understand them.

Good luck to your students on the exam. Nah, luck has nothing to do with it. You prepared them well, they will do well.

Sequences and Series

AP Type Question 10

Sequences and Series – for BC only

Convergence tests for series appear on both sections of the BC Calculus exam. In the multiple-choice section students may be asked to say if a sequence or series converges or which of several series converge.

The Ratio test is used most often to determine the radius of convergence and the other tests to determine the exact interval of convergence by checking the convergence at the end points. Click here for a Convergence test chart students should be familiar with; this list is also on the resource page.

On the free-response section there is usually one full question devoted to sequences and series. This question usually involves writing a Taylor or Maclaurin polynomial for a series.

Students should be familiar with and able to write several terms and the general term of a series. They may do this by finding the derivatives and constructing the coefficients from them, or they may produce the series by manipulating a known or given series. They may do this by substituting into a series, differentiating it or integrating it.

What Students Should be Able to Do 

  • Use the various convergence tests to determine if a series converges. The test to be used is rarely given so students need to know when to use each of the common tests. For a summary of the tests click: Convergence test chart.
  • Write the terms of a Taylor or Maclaurin series by calculating the derivatives and constructing the coefficients of each term.
  • Distinguish between the Taylor series for a function and the function. Do NOT say that the Taylor polynomial is equal to the function; say it is approximately equal.
  • Determine a specific coefficient without writing all the previous coefficients.
  • Write a series by substituting into a known series, by differentiating or integrating a known series or by some other algebraic manipulation of a series.
  • Know (from memory) the Maclaurin series for sin(x), cos(x), ex and \displaystyle \tfrac{1}{1-x} and be able to find other series by substituting into them.
  • Find the radius and interval of convergence. This is usually done by using the Ratio test and checking the endpoints.
  • Be familiar with geometric series, its radius of convergence, and be able to find the number to which it converges, \displaystyle {{S}_{\infty }}=\frac{{{a}_{1}}}{1-r}. Re-writing a rational expression as the sum of a geometric series and then writing the series has appeared on the exam.
  • Be familiar with the harmonic and alternating harmonic series.
  • Use a few terms of a series to approximate the value of the function at a point in the interval of convergence.
  • Determine the error bound for a convergent series (Alternating Series Error Bound and Lagrange error bound). See my post of  February 22, 2013.
  • Use the coefficients (the derivatives) to determine information about the function (e.g. extreme values).

This list is quite long, but only a few of these items can be asked in any given year. The series question on the exam is usually quite straightforward. As I have suggested before, look at and work as many past exam questions to get an idea of what is asked and the difficulty of the questions. Click on Power Series in the “Posts by Topic” list on the right side of the screen to see previous posts on Power Series.

Polar Curves

AP Type Questions 9

Polar Curves for BC only.

Ideally, as with parametric and vector functions, polar curves should be introduced and covered thoroughly in a precalculus course. Questions on the BC exams have been concerned with calculus ideas. Students have not been asked to know the names of the various curves (rose, curves, limaçons, etc.). The graphs are usually given in the stem of the problem, but students should know how to graph polar curves on their calculator.

What students should know how to do

  • Find the intersection of two graphs (to use as limits of integration).
  • Find the area enclosed by a graph or graphs using the formula \displaystyle A=\tfrac{1}{2}\int_{{{\theta }_{1}}}^{{{\theta }_{2}}}{(r(}θ\displaystyle ){{)}^{2}}dθ
  • Use the formulas x(θ) = r(θ)cos(θ)  and y(θ) = r(θ)sin(θ) to
    • convert from polar to rectangular form,
    • calculate the coordinates of a point on the graph, and
    • calculate \frac{dy}{d\theta } and \frac{dx}{d\theta } (Hint: use the product rule).
    • Discuss the motion of a particle moving on the graph by discussing the meaning of \frac{dr}{d\theta } (motion towards or away from the pole), \frac{dy}{d\theta } (motion in the vertical direction) or \frac{dx}{d\theta } (motion in the horizontal direction).
    • Find the slope at a point on the graph, \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }.

This topic appears only occasionally on the free-response section of the exam. The most recent were 2007 and 2013. If the topic is not on the free-response then 1, or maybe 2 questions, probably finding area, can be expected on the multiple-choice section.

Parametric and Vector Equations

AP Type Questions 8

Particle moving on a plane for BC – the parametric/vector question.

I have always had the impression that the AP exam assumed that parametric equations and vectors were first studied and developed in a pre-calculus course. In fact many schools do just that. It would be nice if students knew all about these topics when they started BC calculus. Because of time considerations, this very rich topic probably cannot be fully developed in BC calculus. I will try to address here the minimum that students need to know to be successful on the BC exam. Certainly if you can do more and include a unit in a pre-calculus course do so.

Another concern is that most textbooks jump right to vectors in 3-space while the exam only test motion in a plane and 2-dimensional vectors.

In the plane, the position of a moving object as a function of time, t, can be specified by a pair of parametric equations x=x\left( t \right)\text{ and }y=y\left( t \right) or the equivalent vector \left\langle x\left( t \right),y\left( t \right) \right\rangle . The path is the curve traced by the parametric equations.

The velocity of the movement in the x- and y-direction is given by the vector \left\langle {x}'\left( t \right),{y}'\left( t \right) \right\rangle . The vector sum of the components gives the direction of motion. Attached to the tip of the position vector this vector is tangent to the path pointing in the direction of motion. The length of this vector is the speed of the moving object. \text{Speed }=\sqrt{{{\left( {x}'\left( t \right) \right)}^{2}}+{{\left( {y}'\left( t \right) \right)}^{2}}}

The acceleration is given by the vector \left\langle {{x}'}'\left( t \right),{{y}'}'\left( t \right) \right\rangle .

What students should know how to do

  • Vectors may be written using parentheses, ( ), or pointed brackets, \left\langle {} \right\rangle , or even \vec{i},\vec{j} form. The pointed brackets seem to be the most popular right now, but any notation is allowed.
  • Find the speed at time t\text{Speed }=\sqrt{{{\left( {x}'\left( t \right) \right)}^{2}}+{{\left( {y}'\left( t \right) \right)}^{2}}}
  • Use the definite integral for arc length to find the distance traveled \displaystyle \int_{a}^{b}{\sqrt{{{\left( {x}'\left( t \right) \right)}^{2}}+{{\left( {y}'\left( t \right) \right)}^{2}}}}dt. Notice that this is the integral of the speed (rate times time = distance).
  • The slope of the path is \displaystyle \frac{dy}{dx}=\frac{{y}'\left( t \right)}{{x}'\left( t \right)}.
  • Determine when the particle is moving left or right,
  • Determine when the particle is moving up or down,
  • Find the extreme position (farthest left, right, up or down).
  • Given the position find the velocity by differentiating; given the velocity find the acceleration by differentiating.
  • Given the acceleration and the velocity at some point find the velocity by integrating; given the velocity and the position at some point find the position by integrating. These are really just initial value differential equation problems (IVP).
  • Dot product and cross product are not tested on  the BC exam.

Shorter questions on these ideas appear in the multiple-choice sections. As always, look over as many questions of this kind from past exams as you can find.

Implicit Relations & Related Rates

AP Type Questions 7

Implicitly defined relations and implicit differentiation

These questions may ask students to find the first or second derivative of an implicitly defined relation. Often the derivative is given and students are required to show that it is correct. (This is because without the correct derivative the rest of the question cannot be done.) The follow-up is to answer questions about the function such as finding an extreme value, second derivative test, or find where the tangent is horizontal or vertical.

What students should know how to do

  • Know how to find the first derivative of an implicit relation using the product rule, quotient rule, the chain rule, etc.
  • Know how to find the second derivative, including substituting for the first derivative.
  • Know how to evaluate the first and second derivative by substituting both coordinates of the point. (Note: If all that is needed is the numerical value of the derivative then the substitution is often easier if done before solving for dy/dx or d2y/dx2.)
  • Analyze the derivative to determine where the relation has horizontal and/or vertical tangents.
  • Write and work with lines tangent to the relation.
  • Find extreme values. It may also be necessary to show that the point where the derivative is zero is actually on the graph.

Related Rates

Derivatives are rates and when more than one variable is changing over time the relationships among the rates can be found by differentiating with respect to time. The time variable may not appear in the equations. These questions appear occasionally on the free-response sections; if not there, then a simpler version may appear in the multiple-choice sections. In the free-response sections they may be an entire problem, but more often appear as one or two parts of a longer question.

What students should know how to do

  • Set up and solve related rate problems.
  • Be familiar with the standard type of related rate situations, but also be able to adapt to different contexts.
  • Know how to differentiate with respect to time, using any of the differentiation techniques.
  • Interpret the answer in the context of the problem.
  • Unit analysis.

Shorter questions on both these concepts appear in the multiple-choice sections. As always, look over as many questions of this kind from past exams as you can find.

For some previous posts on related rate see October 8, and 10, 2012 and for implicit relation s see November 14, 2012

Differential Equations

AP Type Questions 6

Differential equations are tested every year. The actual solving of the differential equation is usually the main part of the problem, but it is accompanied by a question about its slope field or a tangent line approximation or something else related. BC students may also be asked to approximate using Euler’s Method. Large parts of the BC questions are often suitable for AB students and contribute to the AB subscore of the BC exam.

What students should be able to do

  • Find the general solution of a differential equation using the method of separation of variables (this is the only method tested).
  • Find a particular solution using the initial condition to evaluate the constant of integration – initial value problem (IVP).
  • Understand that proposed solution of a differential equation is a function (not a number) and if it and its derivative are substituted into the given differential equation the resulting equation is true. This may be part of doing the problem even if solving the differential equation is not required (see 2002 BC 5 – parts a, b and d are suitable for AB)
  • Growth-decay problems.
  • Draw a slope field by hand.
  • Sketch a particular solution on a (given) slope field.
  • Interpret a slope field.
  • Use the given derivative to analyze a function such as finding extreme values
  • For BC only: Use Euler’s Method to approximate a solution.
  • For BC only: use the method of partial fractions to find the antiderivative after separating the variables.
  • For BC only: understand the logistic growth model, its asymptotes, meaning, etc. The exams have never asked students to actually solve a logistic equation IVP.

Shorter questions on this concept appear in the multiple-choice sections. As always, look over as many questions of this kind from past exams as you can find.

For some previous posts on this subject see November 26, 2012,  January 21, 2013 February 1, 6, 2013