Teaching and Learning Theorems

Theorems are carefully worded statements about mathematical facts that have been proved to be true. Important (and some not so important) ideas in calculus and all of mathematics are summarized as theorems. When you come across a theorem you need to understand it; the author of your textbook would not have included it and the…

Advertisements

The Chain Rule

Most of the function students are faced with in beginning calculus are compositions of the Elementary Functions. The Chain Rule allows you to differentiate composite functions easily. The posted listed below are ways to introduce and then use the Chain Rule. Experimenting with a CAS – Chain Rule  Using a CAS to discover the Chain…

Differentiation Techniques

So, no one wants to do complicated limits to find derivatives. There are easier ways of course. There are a number of quick ways (rules, formulas) for finding derivatives of the Elementary Functions and their compositions. Here are some ways to introduce these rules; these are the subject of this week’s review of past posts. Why…

Difference Quotients

Difference quotients are the path to the definition of the derivative. Here are three posts exploring difference quotients. Difference Quotients I  The forward and backward difference quotients Difference Quotients II      The symmetric difference quotient and seeing the three difference quotients in action.  Showing that the three difference quotients converge to the same value. Seeing Difference…

Working up to the derivative.

While limit is what makes all of the calculus work, people usually think of calculus as starting with the derivative. The first problem in calculus is finding the slope of a line tangent to a graph at a point and then writing the equation of that tangent line. Local Linearity is the graphical manifestation of…

Continuity

Karl Weierstrass (1815 – 1897) was the mathematician who (finally) formalized the definition of continuity. In that definition was the definition of limit. So, which came first – continuity or limit? The ideas and situations that required continuity could only be formalized with the concept of limit. So, looking at functions that are and are…

Limits

In an ideal world, I would like to have all students study limits in their precalculus course and know all about them when they get to calculus. Certainly, this would be better than teaching how to calculate derivatives in precalculus (after all derivatives are calculus, not pre… ). Here are a few of my previous…