Why Analytical Applications?

The last unit showed you some ways the derivative may be used to solve problems in the context of realistic situations. This unit looks at analytical applications of the derivative – that is applications apparently unrelated to any kind of real situation. This is a bit misleading since the things you will learn are meant to be extended to practical problems. It’s just that for now we will study the ideas and techniques in general, not in any context.

The unit begins with two important theorems. The Mean Value Theorem that relates the average rate of change of a function to the instantaneous rate of change (the derivative), The MVT, as it is called, helps prove other important ideas especially the Fundamental Theorem of Calculus at the beginning of the integration.

The other theorem is the Extreme Value Theorem. The EVT tells you about the existence of maximum and/or minimum values of a function on a closed interval.

Both are existence theorems, theorems that tell you that something important or useful exists and what conditions are required for it to exist. More on existence theorems in my next post.

As with all theorems, learn the hypothesis and conclusion. The graphical interpretation makes these easy to understand.

You will learn how to determine where a function is increasing and decreasing. This leads to finding the maximum or minimum points – where the function changes from increasing to decreasing or vice versa: You will learn three “tests” – theorems really – to justify the extreme value.

Along with that you will learn some more about the second derivative and concavity.

These ideas and theorems will help you accurately draw the graph of a function and nail down the precise location of the important points and tell what is happening between them. Yes, your graphing calculator can do that, but you’re taking this course to learn why.

You will be asked to determine information about the function from its derivatives – plural.  The derivative may be given as a function, a graph, or even a table of values.

You will also be asked to justify your reasoning – tell how you can be sure what you say is correct. You do that by citing the theorem that applies and check its hypotheses, not by Paige’s method:

These concepts are tested on the AP Calculus exams and often produce the lowest scores of the six free-response questions. Yet, if you learn these concepts, that question can be the easiest.

P.S. Some books use the Latin words extremum (singular) or extrema (plural). They mean the extreme value(s). Maybe they have hung around so that the uninitiated will think calculus is difficult and confusing. I don’t know. Use them if you like: impress your (uninitiated) friends.


Course and Exam Description Unit 5 Topics 5.1 through 5.9

The Mean Value Theorem

Another application of the derivative is the Mean Value Theorem (MVT). This theorem is very important. One of its most important uses is in proving the Fundamental Theorem of Calculus (FTC), which comes a little later in the year.

See last Fridays post Foreshadowing the MVT  for an  a series of problems that will get your students ready for the MVT.

Here are some previous post on the MVT:

Fermat’s Penultimate Theorem   A lemma for Rolle’s Theorem: Any function extreme value(s) on an open interval must occur where the derivative is zero or undefined.

Rolle’s Theorem   A lemma for the MVT: On an interval if a function is continuous on a closed interval [a, b] and differentiable on the open interval (a, b) and f(a) = f(b), there must exist a number in the open interval (a, b) where ‘(c) = 0.

Mean Value Theorem I   Proof

Mean Value Theorem II   Graphical Considerations

Darboux’s Theorem   The Intermediate Value Theorem for derivatives.

Mean Tables


 

 

 

Revised from a post of October 31, 2017


 

Graphing – an Application of the Derivative.

Graphing and the analysis of graphs given (1) the equation, (2) a graph, or (3) a table of values of a function and its derivative(s) makes up the largest group of questions on the AP exams. Most of the other applications of the derivative depend on understanding the relationship between a function and its derivatives.

Here is a list of posts on these topics. Since this list is rather long and the topic takes more than a week to (un)cover,

Tangents and Slopes

Concepts Related to Graphs

The Shapes of a Graph 

Open or Closed?  Concerning intervals on which a function increases or decreases.

Extreme Values

Concavity

Joining the Pieces of a Graph

Using the Derivative to Graph the Function

Real “Real life” Graph Reading

Comparing the Graph of a Function and its Derivative  Activities on comparing the graphs using Desmos.

Writing on the AP Calculus Exams   Justifying features of the graph of a function is a major point-earner on the AP Exams.

Reading the Derivative’s Graph Summary and my most read post!


 

 

 

Revised from a post of October 10, 2017