Foreshadowing the Chain Rule

I assigned another very easy but good problem this week. It was simple enough, but it gave a hint of things to come.

Use the Product Rule to find the derivative of {{\left( f\left( x \right) \right)}^{2}}.

Since we have not yet discussed the Chain Rule, the Product Rule was the only way to go.

\frac{d}{dx}{{\left( f \right)}^{2}}=\frac{d}{dx}\left( f\cdot f \right)=f\cdot {f}'+{f}'\cdot f=2f\cdot f'

 And likewise for higher powers:

\frac{d}{dx}{{f}^{3}}=\frac{d}{dx}\left( f\cdot f\cdot f \right)=f\cdot f\cdot {f}'+f\cdot {f}'\cdot f+{f}'\cdot f\cdot f=3{{f}^{2}}{f}'

If you just look at the answer, it is not clear where the {f}'  comes from. But the result foreshadows the Chain Rule.

Then we used the new formula to differentiate a few expressions such as {{\left( 4x+7 \right)}^{2}} and {{\sin }^{2}}\left( x \right) and a few others.

Regarding the Chain Rule: I have always been a proponent of the Rule of Four, but I have never seen a good graphical explanation of the Chain Rule. (If someone has one, PLEASE send it to me – I’ll share it.)

Here is a rough verbal explanation that might help a little.

Consider the graph of y=\sin \left( x \right). On the interval [0,2\pi ] it goes through all its value in order once – from 0 to 1 to 0 to -1 and back to zero. Now consider the graph of y=\sin \left( 3x \right). On the interval \left[ 0,\tfrac{2\pi }{3} \right] it goes through all the same values in one-third of the time. Therefore, it must go through them three times as fast. So the rate of change of y=\sin \left( 3x \right) between 0 and \tfrac{2\pi }{3} must be three times the rate of change of y=\sin \left( x \right). So the rate of change of  must be 3\cos \left( 3x \right). Of course this rate of change is the slope and the derivative.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s