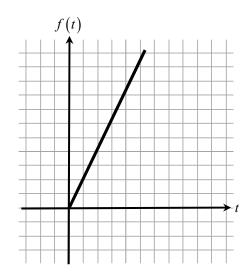
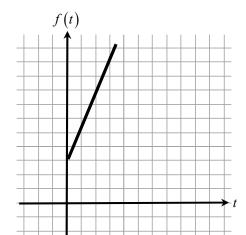

Accumulation Activity

1. Let [0,x], be an interval on the t-axis. Write the equation of the functions $A_1(x)$, $A_2(x)$, and $A_3(x)$ that gives the area of the regions in the first quadrant under the graph of y = f(t), above the t-axis, between t = 0 and t = x. Indicate where this region appears on the graph by shading a typical region and indicating where x is.


$$f(t) = 3$$


$$f(t) = 3$$

$$A_1(t) = \underline{\hspace{1cm}}$$

$$f(t) = 2t$$

$$A_2(t) = \underline{\hspace{1cm}}$$

$$f(t) = 3 + 2t$$

$$A_3(x) = \underline{\hspace{1cm}}$$

2. Calculate the values in the table below:

x	0	1	2	3	4	5
$A_1(x)$						
$A_2(x)$						
$A_3(x)$						

Do these numbers agree with your idea of area? Why does $A_3 = A_1 + A_2$? Show graphically why this is true.

3. Allow *x* to be negative. Calculate the values *from your equations* and fill in the table for these values:

X	-1	-2	-3	-4
$A_1(x)$				
$A_2(x)$				
$A_3(x)$				

Explain your reasoning; specifically tell how does this relates to the area?

4. Calculate:

$$\frac{d}{dx}A_1(x) =$$

$$\frac{d}{dx}A_2(x) =$$

$$\frac{d}{dx}A_3(x) =$$

How does this relate to the original functions?