Accumulation Activity

1. Let $[0, x]$, be an interval on the t-axis. Write the equation of the functions $A_{1}(x), A_{2}(x)$, and $A_{3}(x)$ that gives the area of the regions in the first quadrant under the graph of $y=f(t)$, above the t-axis, between $t=0$ and $t=x$. Indicate where this region appears on the graph by shading a typical region and indicating where x is.

$f(t)=3$
$A_{1}(t)=$ \qquad

$$
f(t)=2 t
$$

$A_{2}(t)=$ \qquad

$$
f(t)=3+2 t
$$

$A_{3}(x)=$

2. Calculate the values in the table below:

x	0	1	2	3	4	5
$A_{1}(x)$						
$A_{2}(x)$						
$A_{3}(x)$						

Do these numbers agree with your idea of area? Why does $A_{3}=A_{1}+A_{2}$? Show graphically why this is true.
3. Allow x to be negative. Calculate the values from your equations and fill in the table for these values:

x	-1	-2	-3	-4
$A_{1}(x)$				
$A_{2}(x)$				
$A_{3}(x)$				

Explain your reasoning; specifically tell how does this relates to the area?
4. Calculate:

$$
\begin{aligned}
& \frac{d}{d x} A_{1}(x)= \\
& \frac{d}{d x} A_{2}(x)= \\
& \frac{d}{d x} A_{3}(x)=
\end{aligned}
$$

How does this relate to the original functions?

