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Suppose we have a pentagram in the xy-plane, oriented as in FIGURE 1a, and want to
find a quartic polynomial whose graph passes through the three vertices indicated. Out
of infinitely many possibilities, there is exactly one quartic polynomial that attains its
minimum value at both of the two lower vertices. This graph—shaped like a smooth
W with its local maximum at the upper vertex—is shown in FIGURE 1b. Now, how
does the graph continue? Will it touch the pentagram again on its way up to infinity?
As it turns out, the graph passes through two more vertices, as shown in FIGURE 1c.
Furthermore, the two points where the graph crosses the interior of a pentagram edge
lie exactly below two other vertices, as shown in FIGURE 1d.

??
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Figure 1 A pentagram and a quartic polynomial

Knowing that length ratios within the pentagram are determined by the golden ratio,
we realize that this quartic polynomial has some regularities governed by the same
ratio. As we will see, there are many more such regularities. Furthermore, they apply
to all quartic polynomials with inflection points. This will be clear once we realize that
the different quartics are all related by an affine transformation.

Symmetric quartic We investigate graphs of quartic polynomials with inflection
points by means of certain naturally defined points and length ratios. As an example,
we consider the function f (x) = x4 − 2x2, shown in FIGURE 2. (This quartic’s shape
differs slightly from the one in FIGURE 1 and is chosen to simplify calculations.) We
define P0(x0, y0) as the point where the third derivative vanishes, so that f ′′′(x0) = 0.
The tangent points of the double tangent (the unique line that is tangent to the graph
at two points) are called P1 and P2. The points where the tangent at P0 intersects the
graph are P3 and P4. We number points so that those to the left of P0 have odd index,
while those to the right have even index.

The line through P0 and P1 intersects the graph in two additional points, called P6

and P7. Similarly, the line through P0 and P2 has the additional intersection points P5
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Figure 2 The quartic x4 − 2x2

and P8. (The inflection points might appear to be P7 and P8, but this is not so.) The
line through P7 and P8 intersects the graph in P9 and P10.

For this graph, we easily find the coordinates P0(0, 0), P2(1, −1), and P4(
√

2, 0).
Symmetry guarantees that the points P1 through P10 are located symmetrically about
the y-axis. The coordinates of P5 through P10 turn out to involve the golden ratio,
ϕ = (1 + √

5)/2. Using the relations ϕ2 = ϕ + 1 and ϕ−2 = 1 − ϕ−1, we calculate
three function values: f (ϕ) = ϕ and f (ϕ−1) = f (

√
ϕ) = −ϕ−1. From these calcula-

tions and the fact that the points P5 through P8 lie on the lines y = ±x , we find the
coordinates P6(ϕ, ϕ), P8(1/ϕ, −1/ϕ), and P10(

√
ϕ, −1/ϕ). From these coordinates,

the following relations between line segment lengths follow quickly:

P3 P4 = √
2P1 P2, P5 P6 = ϕP1 P2, P7 P8 = P1 P2/ϕ, P9 P10 = √

ϕP1 P2.

(1)

Our next step is to show that these relations carry over to the general case.

General quartic We will not proceed by deriving general expressions for the co-
ordinates of the points P0 through P10. Instead, we shall see that the graph of every
quartic polynomial with inflection points can be obtained as the image of the graph
of the symmetric quartic above subject to an appropriate affine transformation. An
affine transformation consists of an invertible linear transformation followed by trans-
lation along a constant vector. An affine transformation of the plane has the following
properties: Straight lines are mapped to straight lines, parallel lines to parallel lines,
and tangents to tangents, while length ratios between parallel line segments are pre-
served [1, chapter 2].

Consider the symmetric quartic

f (x) = x4 + wx2, w < 0, (2)

and a general quartic with inflection points,

g(x) = ax4 + bx3 + cx2 + dx + e, a �= 0.

Define x0 by g′′′(x0) = 0 (so x0 = −b/4a) and k = √
g′′(x0)/2aw. (The existence of

two inflection points implies that g′′(x0) and a have opposite signs, and since w is
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negative, k is real.) The map (x, y) �→ (x̄, ȳ) given by

(
x̄
ȳ

)
=

(
1 0

g′(x0) 1

)(
k 0
0 ak4

) (
x
y

)
+

(
x0

g(x0)

)
(3)

is an affine transformation consisting of a scaling transformation (with a scaling factor
k in the x-direction and a scaling factor |a|k4 in the y-direction), a reflection about the
x-axis if a is negative, a shear in the y-direction, and a translation. In components, we
have the equations

x̄ = kx + x0, ȳ = ak4 y + g′(x0)kx + g(x0).

Suppose (x, y) lies on the graph of f , that is, y = f (x). Substituting y = x4 + wx2

and x = (x̄ − x0)/k into the expression for ȳ yields

ȳ = a(x̄ − x0)
4 + 1

2
g′′(x0)(x̄ − x0)

2 + g′(x0)(x̄ − x0) + g(x0).

The right-hand side is the fourth-degree Taylor polynomial of g at x0 and is therefore
identical to g(x̄). Thus, (x̄, ȳ) lies on the graph of g, so the above transformation
indeed maps the graph of f to the graph of g.

Moreover, the origin, where f ′′′(x) = 0, is mapped to (x0, g(x0)), where g′′′(x) =
0. From this and the general properties of affine maps it follows that each of the points
P0 through P10 on the graph of f is mapped to the analogously defined point on the
graph of g. (We will use the same notation Pi for points on both graphs.) The results
for the case w = −2 then show that the line segments P1 P2, P3 P4, . . . , P9 P10 on the
graph of g are all parallel, are bisected by the vertical line through P0, and satisfy the
relations (1). FIGURE 3 illustrates this for the quartic 2x4 − x3 − 2x2 + x + 1. Note
that P0 divides the line segments P6 P1 and P5 P2 according to the golden ratio, P7

divides P0 P1 according to the golden ratio, and analogously for P8 and P0 P2.

Further characteristic ratios We now define some more points on the graph of a
quartic, starting with the point P0 from FIGURE 3 and the inflection points P11 and P12;
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Figure 3 The quartic 2x4 − x3 − 2x2 + x + 1 and the points P0 through P10 (axes not
shown)
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Figure 4 The quartic 2x4 − x3 − 2x2 + x + 1 and the points P11 through P20

see FIGURE 4. The tangents at the inflection points intersect the graph at the points P13

and P14. The line through the inflection points intersects the graph at P15 and P16. The
line through P0 and P15 intersects the graph at P18 and P19, while the line through
P0 and P16 intersects the graph at P17 and P20. The list of statements may now be
extended:

THEOREM. Let P0, . . . , P20 be points defined as above on the graph of a quartic
polynomial with inflection points, and ϕ = (

√
5 + 1)/2. Then:

1. The line segments P2n−1 P2n (n = 1, . . . , 10) are all parallel.
2. Intersection points of the graph and a line parallel to the tangent in P0(x0, y0) are

symmetrically located about the point on the line with x = x0.

3. P3 P4 = √
2P1 P2

4. P5 P6 = ϕP1 P2

5. P7 P8 = P1 P2/ϕ

6. P9 P10 = √
ϕP1 P2

7. P11 P12 = P1 P2/
√

3
8. P13 P14 = 3P11 P12

9. P17 P18 = ϕ2 P11 P12

10. P15 P11 = P12 P16 = P11 P12/ϕ

11. P19 P20 = P11 P12/ϕ
2

Proof. The new statements (2, 7–11, and part of 1) may be verified relatively easily
for the quartic x4 − 6x2, that is, f (x) from (2) with w = −6. (Since then f ′′(±1) = 0,
this quartic is simpler to use for P11 through P20 than x4 − 2x2.) Now, inflection points
are mapped to inflection points by an affine map. (Indeed, g′′(x̄) = ak2 f ′′(x) in our
case.) Then, the arguments made earlier apply here as well.

The properties of the line through the inflection points P11 and P12 (statement 10,
and in part 1) have been pointed out earlier [2], as has the symmetry property (state-
ment 2) and the fact that P0 is the point where the tangent is parallel to the double



VOL. 82, NO. 3, JUNE 2009 201

tangent (a consequence of statement 1) [2, 3]. I have found no reference to the other
relations, including, in particular, the five occurrences of the golden ratio.

Our affine transformation (3) shows that the graph of a general quartic function may
be regarded as an originally symmetric graph that has been sheared in the y-direction
and moved. Considering this, the properties regarding parallelism and symmetry (for
instance, that the line segments P15 P11 and P12 P16 have equal length) become obvious.
The same applies to ratios between areas, since a scaling transformation changes all
areas by a constant factor, while a shear preserves areas. For example, it is known that
the line through the inflection points of an arbitrary quartic function cuts off three areas
that are in the ratio of 1 : 2 : 1. This is readily verified for f (x) from (2) with w =
−6 by checking that

∫ √
5

0 ( f (x) − (−5)) dx = 0, whereby it is immediately proven
generally.

Quartic polynomials and pentagrams Returning to FIGURE 1, we see that it is just
an example of statements 4 and 5 of the theorem. The same can be illustrated by FIG-
URE 5a, where the smaller pentagram fits exactly into the inner pentagon of the larger
pentagram (meaning the linear size ratio is 1 : ϕ2). Similarly, as the reader may check,
FIGURE 5b illustrates statements 9, 10, and 11. In each of these graphs, three points
are given, two of which are specified as minimum points, (a), or inflection points, (b).
This completely determines the graphs; they will automatically pass through four or
six more vertices. The possibility of finding such simple constellations of pentagrams
and quartic graphs reflects the occurrence of the golden ratio in quartic polynomials.

(a) (b)

Figure 5 Quartic polynomials passing through pentagram vertices

To summarize, we have found simple characteristic length ratios on the graph of a
quartic polynomial with inflection points, including several occurrences of the golden
ratio. These length ratios are left invariant by an affine transformation that relates a
symmetric quartic to a general quartic with inflection points.
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