PHI on Cubics! phi!

By Lin McMullin

The Golden Ratio appears again; this time in cubic polynomials!
This result was sent to me by David Tschappat a senior math major at Our Lady of the Lake University, San Antonio, TX. It is, I believe, an original discovery by him.

The result is presented here as an exercise with my solution.
Consider a cubic polynomial, $f(x)$, with a point of inflection at $x=r$ and (local) extreme values at $x=p_{1}$ and $x=p_{2}$. Consider two other points $x=q_{1}$ and $x=q_{2}$ such that

$$
q_{1}<p_{1}<r<p_{2}<q_{2}
$$

And such that the numbers are equally spaced, h units apart; i.e.,

$$
q_{2}-p_{2}=p_{2}-r=r-p_{1}=p_{1}-q_{1}=h
$$

(Note: A cubic polynomial is symmetric about its point of inflection. This implies that $p_{2}-r=r-p_{1}$. Then q_{1} and q_{2} are chosen so the five points will be equally spaced, h units apart.)

1. Warm up exercise 1: Show that $f\left(q_{1}\right)=f\left(p_{2}\right)$ and $f\left(q_{2}\right)=f\left(p_{1}\right)$
2. Warm up exercise 2: Show that $f^{\prime}\left(q_{1}\right)=f^{\prime}\left(q_{2}\right)$
3. The real exercise: Recall that the Golden ratio $\Phi=\frac{1}{2}(1+\sqrt{5})$ and its conjugate $\phi=\frac{1}{2}(1-\sqrt{5})$. Show that the line through the local extreme point $\left(p_{2}, f\left(p_{2}\right)\right)$ that is parallel to the tangent line to f at $\left(q_{1}, f\left(q_{1}\right)\right)$, intersects the cubic at

$$
\begin{aligned}
& x_{1}=p_{2}, \\
& x_{2}=\Phi \cdot p_{2}+\phi \cdot q_{1}, \text { and } \\
& x_{3}=\Phi \cdot q_{1}+\phi \cdot p_{2}
\end{aligned}
$$

Solution

1. Since the graphs of cubic polynomials are symmetric to their point of inflection, we can, without loss of generality, translate f so that its point of inflection is at the origin. Let g be the image of f. Then,

The image of $q_{1}=-2 h$,
The image of $p_{1}=-h$, the x-coordinate of the extreme value,
The image of $r=0$, the x-coordinate of the point of inflection,
The image of $p_{2}=h$, the x-coordinate of the extreme value,
The image of $q_{2}=2 h, \quad$ and
The image of $f(x)$ is $g(x)=k x^{3}-3 h^{2} k x$, where k is a non-zero constant
2. First warm up exercise:

$$
\begin{aligned}
& g(-2 h)=-8 h^{3} k+6 h^{3} k=-2 h^{3} k \\
& g(h)=k h^{3}-3 h^{3} k=-2 h^{3} k \\
& \therefore g(-2 h)=g(h)
\end{aligned}
$$

And likewise $g(-h)=g(2 h)=2 h^{3} k$. This means that the pairs of points are located horizontally from each other.
3. Second warm up exercise:

$$
\begin{aligned}
& g^{\prime}(x)=3 k x^{2}-3 h^{2} k \\
& g^{\prime}(-2 h)=3 k(-2 h)^{2}-3 h^{2} k=9 h^{2} k \\
& g^{\prime}(2 h)=3 k(2 h)^{2}-3 h^{2} k=9 h^{2} k \\
& \therefore g^{\prime}(-2 h)=g^{\prime}(2 h)
\end{aligned}
$$

This should be obvious since cubic polynomials are symmetric to their point of inflection and also from the fact that $g^{\prime}(x)$ is an even function.
4. The real exercise: The line through $(h, g(h))$ with slope of $g^{\prime}(-2 h)=9 h^{2} k$ is

$$
\begin{aligned}
y(x) & =g(h)+g^{\prime}(-2 h)(x-h) \\
& =-2 h^{3} k+9 h^{2} k(x-h) \\
& =9 h^{2} k x-11 h^{3} k
\end{aligned}
$$

Then to find the points of intersection solve

$$
\begin{gathered}
g(x)=y(x) \\
k x^{3}-3 h^{2} k x=9 h^{2} k x-11 h^{3} k . \\
x^{3}-12 h^{2} x+11 h^{3}=0
\end{gathered}
$$

Since we know one solution is $x=h$ this expression may be factored by hand by using synthetic division to find the depressed equation, a quadratic, which may then be factored by using the quadratic formula, as shown below. (I of course used a CAS).

$$
\begin{gathered}
(x-h)\left(x^{2}-h x-11 h^{2}\right)=0 \\
(x-h)\left(x+\frac{1}{2}(1-3 \sqrt{5}) h\right)\left(x+\frac{1}{2}(1+3 \sqrt{5}) h\right)=0 \\
x_{1}=h, \quad x_{2}=\frac{(-1+3 \sqrt{5})}{2} h, \quad x_{3}=\frac{(-1-3 \sqrt{5})}{2} h
\end{gathered}
$$

Finally,

$$
\begin{aligned}
& \Phi \cdot h+\phi \cdot(-2 h)=\frac{1+\sqrt{5}}{2} h+\frac{1-\sqrt{5}}{2}(-2 h)=\frac{(-1+3 \sqrt{5})}{2} h=x_{2} \\
& \Phi \cdot(-2 h)+\phi \cdot h=\frac{1+\sqrt{5}}{2}(-2 h)+\frac{1-\sqrt{5}}{2} h=\frac{(-1-3 \sqrt{5})}{2} h=x_{3}
\end{aligned}
$$

By symmetry, a similar result exists for the line through the other extreme point, $(-h, g(-h))$, with a slope of $g^{\prime}(2 h)$. The intersection points are at $x_{1}=-h$ and

$$
\begin{aligned}
& x_{2}=\Phi \cdot(-h)+\phi \cdot(2 h)=\frac{1+\sqrt{5}}{2}(-h)+\frac{1-\sqrt{5}}{2}(2 h)=\frac{(1-3 \sqrt{5})}{2} h \\
& x_{3}=\Phi \cdot(2 h)+\phi \cdot(-h)=\frac{1+\sqrt{5}}{2}(2 h)+\frac{1-\sqrt{5}}{2}(-h)=\frac{(1+3 \sqrt{5})}{2} h
\end{aligned}
$$

