Closest Point Problem Solutions

Original exercise using the point $(0, a)$:

$$
\begin{aligned}
& z(x)=\sqrt{x^{2}+\left(x^{2}-a\right)^{2}} \\
& z^{\prime}(x)=\frac{2 x+2\left(x^{2}-a\right)(2 x)}{2 z(x)}=\frac{x\left(2 x^{2}-2 a+1\right)}{z(x)} \\
& z^{\prime}(x)=0 \text { when } x=0, x=-\sqrt{a-\frac{1}{2}}, x=\sqrt{a-\frac{1}{2}} \\
& \text { When } a=2, x=0, x=-\sqrt{\frac{3}{2}}, x=\sqrt{\frac{3}{2}}
\end{aligned}
$$

Exercise 1: The local maximum distance to the origin is of course 2, so the graph of $z(x)$ goes

 through the center of the circle. The minimums are directly below the place where the circle and parabola intersect. Their distance above the x-axis is the same as distance from the closest point to $(0,2)$. .

Exercise 2: The closest points occur when $x= \pm \sqrt{a-\frac{1}{2}}$. The closest points are $\left(\pm \sqrt{a-\frac{1}{2}}, a-\frac{1}{2}\right)$, Why?

The radius of the circle (the distance from the closest point to the center) touching the closest point is $\sqrt{a-\frac{1}{4}}$. When $a=1 / 2, x=0$. Here the three critical points are coincident, see left figure below. The origin is the closest, in fact the only point where the circle touches the parabola.

For $\frac{1}{4}<a<\frac{1}{2}$ the radius of the circle is too short to reach the origin, see the center figure below ($a=0.32$).

For values of $a \leq \frac{1}{4}$ there is no circle. The closest point is still the origin, but the circle idea breaks down.

Exercise 3 and 4: The zeros of the derivative should be directly below the point where the circle and parabola are tangent and below the low points on the graph of $z(x)$. Due to the symmetry of the parabola, $z(x)$ is an even function and $z^{\prime}(x)$ is an odd function. (Note: the graph of $z(x)$ does not intersect the parabola at the point of tangency.)

Project: The Winplot equations are:
Parabola:

$$
\begin{aligned}
& y=x^{\wedge 2} \\
& x^{\wedge 2+(y-a) \wedge 2=\left((a-.5)+((a-.5)-a)^{\wedge} 2\right)} \\
& (x, y)=(0, a) \\
& y=\operatorname{sqrt}\left(x^{\wedge} 2+\left(x^{\wedge} \wedge-a\right)^{\wedge}\right) \\
& y=\left(x^{\wedge}\left(x^{\wedge} 2-a\right)(2 x)\right) / \operatorname{sqrt}\left(x^{\wedge} 2+\left(x^{\wedge} 2-a\right)^{\wedge} 2\right)
\end{aligned}
$$

Center of Circle:
Distance $\mathrm{z}(\mathrm{x})$
Derivative z’(x)
Exercise 5: The coordinates of the points of inflection of the derivative are the zeros of the third derivative of $z(x)$, using a TI-Nspire:

Define $z(x)=\sqrt{x^{2}+\left(x^{2}-a\right)^{2}}$	Done
solve $\left(\frac{d^{3}}{d x^{3}}(z(x))=0, x\right)$	$x=-\sqrt{a}$ or $x=\sqrt{a}$ or $x=0$ or $a=\frac{1}{4}$

This means the left and right POIs of the derivative have the same x-coordinates as the point on the parabola directly left and right of the center of the circle. $\left(-\sqrt{a},(-\sqrt{a})^{2}\right)=(-\sqrt{a}, a)$ and $\left(\sqrt{a},(\sqrt{a})^{2}\right)=(\sqrt{a}, a)$. The origin is also a POI. At $a=1 / 4, z^{\prime \prime \prime}(x)=0$.

