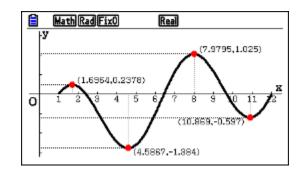

Solution Mean Numbers Question September 25, 2013

Consider the function $f(x) = \sin(x)$ on the closed interval [1, 12].

1. Write an equation of a line, y(x) between the endpoints of the function.

$$y(x) = \sin(1) + \frac{\sin(12) - \sin(1)}{11}(x - 1)$$
$$y(x) = -0.125277x + 0.966748$$


Slope =
$$-0.125277$$

2. Write the equation of a function h(x) that gives the vertical distance between f(x) and y(x). Since f may be both above and below y this function may have positive and negative values.

$$h(x) = f(x) - y(x) = \sin(x) - \left(\sin(1) + \frac{\sin(12) - \sin(1)}{11}(x - 1)\right)$$
$$h(x) = \sin(x) - 012527x - 0.96678$$

3. Graph *h* and find its critical values. What are these places with respect to the graph of *h* and the graph of *f*.

Critical values: x = 1.696403463, 4.586782052, 7.979588639, 10.86996724

These are the locations the local maximums and minimums of h. These are the locations of the places where the distance from f to y are locally longest or shortest.

4. Calculate the derivative of *f* at the critical values of *h*.

$$f'(x) = \cos(x)$$

$$\cos(1.6964035) = -0.125277$$

$$\cos(4.5867821) = -0.125277$$

$$\cos(7.9795886) = -0.125277$$

$$\cos(10.869967) = -0.125277$$
Note that -0.125277 is the slope of $y(x)$

5. Interpret your result graphically.

At these points the tangent lines to f are parallel to y the line between the endpoints. In other words these are the values of c guaranteed by the Mean Value Theorem.